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Renormalized field theory of driven lattice gases under infinitely fast drive
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We use field theoretic renormalization group methods to study the critical behavior of a recently proposed
Langevin equation for driven lattice gases under infinitely fast drive. We perform an expansion around the
upper critical dimensiond.= 4, and obtain the critical exponents to one-loop order. The main features of the
two-loop calculation are also outlined. The renormalized theory is shown to exhibit a behavior different from
the standard field theory for the driven lattice gas with finite driving, i.e., it is not mean-field-like.

PACS numbgs): 64.60—i, 05.70.Fh

Since it was introduced by Katt al. [1], the driven lat- (&(x,1))=0,
tice gas modelDLG hereafter has attracted considerable
interest[2,3]. Being one of the simplest archetypes of a non- (V-EX, DV EX 1))==V28(x—x")8(t—t"). (2
equilibrium model, its study may contribute toward the un-
derstanding of out-of-equilibrium systems. The DLG con-This equation is analogous to a modglin the direction
sists of a periodic regular lattice on which nearest-neighboperpendicular to the fieldwhere the energy takes into ac-
particle-hole exchanges are performed. The hopping rate igount the interaction with the parallel direction through the
determined by the energetics of the Ising Hamiltortigrthe ~ crossed derivatives tejmcoupled to a simple random diffu-
coupling to a thermal bath at temperatdieand an external sion mechanism in the parallel direction. This means that the
uniform driving fieldE pointing along a specific lattice axis. relevant ingredient of the infinite driving is the anisotropy it

In particular, the hopping rate depends [(dAH+IE)/T], introduces, while the directionality of the flux is irrelevant
where AH is the energy variation that would be caused byfrom a renormalization-group point of vievA very similar
the configuration change being trieds=|E|, and | equation has been proposed to describe Eheedericksz

=1(—1) for jumps along(against E and 0 otherwisgsee transition in nematic liquids, and general asymmetric two-
[2,3] for a detailed descriptionThe DLG exhibits a continu- dimensional pattern formatidir].

ous phase transition from a disordered state at Aigh a In order to renormalize this equation, following standard
stripelike ordered state at sufficiently I6W[2,3]. The nature  methodg8], let us introduce a Martin-Siggia-Rose response
and properties of this transition have been much studied ifield ¢ and recast Eq(1) as a dynamical function#p], the
recent years. A new general Langevin equation has been prassociated action of which is

posed, designed to capture the physics of the DLG at the

critical point[4]. This Langevin equation has different rel- ~ ~ €

evant terms for the cases<E<« andE= behaves as a £(¢’¢):J d’ dt[ ¢[‘9t_ E(_AHAL_Ai“L A1)
sort of tricritical point in the parameter space where some

terms are exactly zero and the relevance of the different op- € g~ €~ o 102~

erators has to be reevaluated. For finite values of the driving 231 $AL &7~ 2 ¢(Vit2Vj )d’] : @)
field E the Langevin equation previously proposed by Jans-

sen and Schmittmanf6] is recovered. It is the purpose of  The free propagators are

this paper to investigate the critical behavior of the DLG for

¢

E= in order to determine explicitly whether the differ- 0 —eg(k2+ 3 kD)
ences from the @ E<w case are relevant and whether, Goak,w)= PRE: ,
therefore, the critical behavior is changed. w?’+| =] kI (k?+7)?
The new Langevin equation reafi$5] @
0 1
o g Gi(k,w)= ; ,
0= | ~AA 6= AT g+ A Gt A & o 2K (k)
+eoV, - & +eyl2V g, (1)  and the vertex is- e,g/12k>. These elements can be repre-

sented diagrammatically as in Fig.(vavy legs symbolize

response fields; straight lines stand for density fields
whereV, (V) is the gradient operator in the direction par-  In order to renormalize the theory, one has to look for the
allel (perpendiculgrto the electric field, and the noise satis- primitive divergences in a perturbation expansiorl{f, de-
fies notes a one-particle irreducible vertex function wittexter-
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After settingA, = 3/3272, one obtains

u
1+

o2l %
2 = —
kT 11|NP 2 T

8 1

FIG. 1. Elements of perturbation theory: the response and cor- (8)
relation propagators and the four-point vertéxlegs are indicated gl | _@A_l o2 1 — 3_U
by a wiggly line. k2L aane= 5 A 7T

€

nal % legs anch external¢ legs, onlyT'y, andT' ;5 are found ~ Which entails

to possess primitive divergences. The Feynman diagrams u
contributing to these vertex functiorishown in Fig. 2 are Z,=1+—+0(u?),
topologically identical to modeB graphs[8]. However, the &
bare correlation and response propagators that follow from 3 ©)
Eq. (3) are anisotropic, in contrast to their counterparts in Z,=1- _u+o(u2).
modelB [8]. €

To one loop ine=4—d, the ultraviolet divergences in
I'y; andT' 5 lead to the renormalization afandu, the latter
being the dimensionless coupling constastA, 7 */?g. A,
is a numerical factor to be defend below. We define renor
malized parametersgy and ugr by 7r=Z_r and ug=2,u.
Given that the leftmost diagram in Fig. 2 does not depend on
external moments or frequencies, the derivativel gfwith
respect to them vanish, and no extfield) renormalizations
are required. Th& factors are determined by the following
normalization conditions:

The renormalization-group equation obtained after requiring
invariance of the bare irreducible vertex functions upon
changes on the normalization point reads

[0, + By +Ld, TR =0, (10)

where the renormalization-group functions are defined in the
usual way: B(ug)=ud,ug and {(ug)=ud,(In7g). A
straightforward calculation then leads to

o B(ug) = —eug+3ud+O(ud),
o
akfrmNP:? TR, (11)

£(Ug)=2—Ug+O(UR),
(5
R €0 a1 from which one can determine the location and stability of
3kfF13|NP=§ A; "UR. the fixed points. To this order, apart from the trivial mean-
field resultuf =0, a nontrivial, infrared stable, fixed point
A convenient choice for the normalization point NPks uk=e/3 emerges. This fixed point controls the critical be-
=w;=0 and r=pu?, where u is an arbitrary momentum havior of the theory below four dimensions.
scale. To one loop, we find Now we proceed with the calculation of the associated
critical exponents. We first note that, as indicated above, no
renormalization of the fields, ¢ has been required. There-
fore, in particular, the anomalous dimension gfvanishes
(6) up to one loop, i.e.p=0+0O(&?). Concerning the exponent
€ , v, , which controls the divergence of the correlation length
Ia(w, k)= kig+D,, with temperaturg11], we simply haver, =(u%)~%, and
v, =1/2+e/12+0(e?). This is to be compared with

where D, (DZ) Corresponds to the a|gebraic expression of= 1/2, the value obtained by Janssen and Schmittmann in the
the left (right) diagram in Fig. 2. A calculation in dimen- standard field theory6]. This result demonstrates that the

— €012 12
Fll((l),k)—|(1)+ ?kL(k +’T)+Dl,

sional regularizatiof10,9] yields continuous version Eq. (1) of the DLG with=Fc is not
mean-field-like but characterizes a universality class other
3 g& , rioel2 than the one in [6] Since there are no dangerous irrelevant
D1:6_4 TR T operators in Eq(3) standard scaling laws appl{gontrary to
7) the case if6]). Therefore the exponents are related to each
9 gle, , 7P other and estimatingy and v, is sufficient to deduce all the
Dy,=— —— i_ other exponents. For instance, the order parameter exponent
64 m € [ can be written ag=(v,/2)(d—2+ ) [10], and we have

B=(1/2)—(e/6)+O(e?).

The previous results concern the one-loop approximation.
The two-loop calculation presents an interesting new feature,
namely, that the scaling becomes fully anisotropic. In fact,
Fig. 3 reveals that, contrary to what happens to one-loop

order, the two-loop correction tb';; depends on external
FIG. 2. One-loop diagrams contributing Toy; (left) andT';;  frequencies and momenta; and in the absence of any symme-
(right). try between parallel and perpendicular derivatives, one can
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corrections to mean field are observed explicitly in the one-
loop approximation for the exponent . Anisotropic expo-
nents and a non-mean-field exponghappear from simple

U arguments based on the analysis up to two-loop diagrams.

These severe differences with respect to the finite driving
field case call for extensive computational simulations to ob-
serve numerically the physical differences between the two
cases.

Note added in proofWe thank Sergio Caracciolo and
easily convince oneself by simple inspection thf)@fl“ll collaborators for kindly sharing with us unpublished results,

#0.2dT,. In order to absorb these two different diver- which permitted us to detect a small combinatorial error in
oM our original calculation. They have also pointed out to us a

gences, one is constrained to renormalize the parallel and the o iem with infrared singularities in the Langevin equation
perpendicular momenta in a different way:kif —lk, then — yroqanted in this papésee also B. Schittmaret al, e-print

kj— 1" 7, (where y=e? can be determined by explicitly o4 mat/9912286 This problem will be tackled in a forth-
computing the derivatives of the diagram in Fig. Jhe coming publication.

scaling law has to be rewritten @&=v, /2(d—2+ y+ 7),

and all the exponents become non-mean-field in this approxi- It is a pleasure to acknowledge J. Marro, J. L. Lebowitz,

mation. and P. L. Garrido for useful discussions, and E. Hedez-
Summing up, we have performed the renormalization ofGarca for pointing out Ref[7] to us. This work has been

the field theory in(4] for the DLG under an infinitely large partially supported by the European Network Contract No.

driving field. The renormalization procedure yields resultsERBFM-RXCT980183 and by the Ministerio de Educacio

essentially different from those for a finite field. In particular, under Project No. DGESEIC, PB97-0842.

FIG. 3. Two-loop contribution td"y;.
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