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Renormalized field theory of driven lattice gases under infinitely fast drive
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We use field theoretic renormalization group methods to study the critical behavior of a recently proposed
Langevin equation for driven lattice gases under infinitely fast drive. We perform an expansion around the
upper critical dimension,dc54, and obtain the critical exponents to one-loop order. The main features of the
two-loop calculation are also outlined. The renormalized theory is shown to exhibit a behavior different from
the standard field theory for the driven lattice gas with finite driving, i.e., it is not mean-field-like.

PACS number~s!: 64.60.2i, 05.70.Fh
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Since it was introduced by Katzet al. @1#, the driven lat-
tice gas model~DLG hereafter! has attracted considerab
interest@2,3#. Being one of the simplest archetypes of a no
equilibrium model, its study may contribute toward the u
derstanding of out-of-equilibrium systems. The DLG co
sists of a periodic regular lattice on which nearest-neigh
particle-hole exchanges are performed. The hopping rat
determined by the energetics of the Ising HamiltonianH, the
coupling to a thermal bath at temperatureT, and an externa
uniform driving fieldE pointing along a specific lattice axis
In particular, the hopping rate depends on@(DH1 lE)/T#,
whereDH is the energy variation that would be caused
the configuration change being tried,E5uEu, and l
51(21) for jumps along~against! E and 0 otherwise~see
@2,3# for a detailed description!. The DLG exhibits a continu-
ous phase transition from a disordered state at highT to a
stripelike ordered state at sufficiently lowT @2,3#. The nature
and properties of this transition have been much studie
recent years. A new general Langevin equation has been
posed, designed to capture the physics of the DLG at
critical point @4#. This Langevin equation has different re
evant terms for the cases 0,E,` andE5` behaves as a
sort of tricritical point in the parameter space where som
terms are exactly zero and the relevance of the different
erators has to be reevaluated. For finite values of the driv
field E the Langevin equation previously proposed by Ja
sen and Schmittmann@6# is recovered. It is the purpose o
this paper to investigate the critical behavior of the DLG
E5` in order to determine explicitly whether the diffe
ences from the 0,E,` case are relevant and whethe
therefore, the critical behavior is changed.

The new Langevin equation reads@4,5#

] tf5
e0

2 F2D iD'f2D'
2 f1tD'f1

g

3!
D'f3G

1Ae0“'•j'1Ae0/2¹ ij i , ~1!

where¹ i(¹') is the gradient operator in the direction pa
allel ~perpendicular! to the electric field, and the noise sati
fies
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^j~x,t !&50,

^“•j~x,t !“8j~x8,t8!&52“

2d~x2x8!d~ t2t8!. ~2!

This equation is analogous to a modelB in the direction
perpendicular to the field~where the energy takes into ac
count the interaction with the parallel direction through t
crossed derivatives term!, coupled to a simple random diffu
sion mechanism in the parallel direction. This means that
relevant ingredient of the infinite driving is the anisotropy
introduces, while the directionality of the flux is irreleva
from a renormalization-group point of view. A very similar
equation has been proposed to describe theFréedericksz
transition in nematic liquids, and general asymmetric tw
dimensional pattern formation@7#.

In order to renormalize this equation, following standa
methods@8#, let us introduce a Martin-Siggia-Rose respon
field f̃ and recast Eq.~1! as a dynamical functional@9#, the
associated action of which is

L~f̃,f!5E ddx dtH f̃F] t2
e0

2
~2D iD'2D'

2 1tD'!Gf
2

e0

2

g

3!
f̃D'f32

e0

2
f̃~¹'

2 1 1
2 ¹ i

2!f̃J . ~3!

The free propagators are

G02
0 ~k,v!5

2e0~k'
2 1 1

2 ki
2!

v21S e0

2 D 2

k'
4 ~k21t!2

,

~4!

G11
0 ~k,v!5

1

iv1S e0

2 D k'
2 ~k21t!

,

and the vertex is2e0g/12k'
2 . These elements can be repr

sented diagrammatically as in Fig. 1~wavy legs symbolize
response fields; straight lines stand for density fields!.

In order to renormalize the theory, one has to look for t
primitive divergences in a perturbation expansion. IfG ñn de-
notes a one-particle irreducible vertex function withñ exter-
1161 ©2000 The American Physical Society
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nal f̃ legs andn externalf legs, onlyG11 andG13 are found
to possess primitive divergences. The Feynman diagr
contributing to these vertex functions~shown in Fig. 2! are
topologically identical to modelB graphs@8#. However, the
bare correlation and response propagators that follow f
Eq. ~3! are anisotropic, in contrast to their counterparts
modelB @8#.

To one loop in«542d, the ultraviolet divergences in
G11 andG13 lead to the renormalization oft andu, the latter
being the dimensionless coupling constantu[A«t2«/2g. A«

is a numerical factor to be defend below. We define ren
malized parameterstR and uR by tR5Ztt and uR5Zuu.
Given that the leftmost diagram in Fig. 2 does not depend
external moments or frequencies, the derivatives ofG11 with
respect to them vanish, and no extra~field! renormalizations
are required. TheZ factors are determined by the followin
normalization conditions:

]k
'
2 G11

R uNP5
e0

2
tR ,

~5!

]k
'
2 G13

R uNP5
e0

2
t«/2A«

21uR .

A convenient choice for the normalization point NP iski
5v i50 and t5m2, where m is an arbitrary momentum
scale. To one loop, we find

G11~v,k!5 iv1
e0

2
k'

2 ~k21t!1D1 ,

~6!

G13~v,k!5
e0

2
k'

2 g1D2 ,

where D1 (D2) corresponds to the algebraic expression
the left ~right! diagram in Fig. 2. A calculation in dimen
sional regularization@10,9# yields

D15
3

64

ge0

7p2 k'
2 t12«/2

«
,

~7!

D252
9

64

g2e0

p2 k'
2 t2«/2

«
.

FIG. 1. Elements of perturbation theory: the response and

relation propagators and the four-point vertex.f̃ legs are indicated
by a wiggly line.

FIG. 2. One-loop diagrams contributing toG11 ~left! and G13

~right!.
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After settingA«53/32p2, one obtains

]k
'
2 G11uNP5

e0

2
tF11

u

«G ,
~8!

]k
'
2 G13uNP5

e0

2
A«

21t«/2uF12
3u

« G ,
which entails

Zt511
u

«
1O~u2!,

~9!

Zu512
3u

«
1O~u2!.

The renormalization-group equation obtained after requir
invariance of the bare irreducible vertex functions up
changes on the normalization point reads

@m]m1b]uR
1z]tR

#G ñn
R 50, ~10!

where the renormalization-group functions are defined in
usual way: b(uR)[m]muR and z(uR)[m]m(ln tR). A
straightforward calculation then leads to

b~uR!52«uR13uR
21O~uR

3 !,
~11!

z~uR!522uR1O~uR
2 !,

from which one can determine the location and stability
the fixed points. To this order, apart from the trivial mea
field result uR* 50, a nontrivial, infrared stable, fixed poin
uR* 5«/3 emerges. This fixed point controls the critical b
havior of the theory below four dimensions.

Now we proceed with the calculation of the associa
critical exponents. We first note that, as indicated above,
renormalization of the fieldsf̃, f has been required. There
fore, in particular, the anomalous dimension off vanishes
up to one loop, i.e.,h501O(«2). Concerning the exponen
n' , which controls the divergence of the correlation leng
with temperature@11#, we simply haven'5z(uR* )21, and
n'51/21«/121O(«2). This is to be compared withn
51/2, the value obtained by Janssen and Schmittmann in
standard field theory@6#. This result demonstrates that th
continuous version Eq. (1) of the DLG with E5` is not
mean-field-like but characterizes a universality class oth
than the one in [6]. Since there are no dangerous irreleva
operators in Eq.~3! standard scaling laws apply~contrary to
the case in@6#!. Therefore the exponents are related to ea
other and estimatingh andn' is sufficient to deduce all the
other exponents. For instance, the order parameter expo
b can be written asb5(n'/2)(d221h) @10#, and we have
b5(1/2)2(e/6)1O(«2).

The previous results concern the one-loop approximat
The two-loop calculation presents an interesting new feat
namely, that the scaling becomes fully anisotropic. In fa
Fig. 3 reveals that, contrary to what happens to one-lo
order, the two-loop correction toG11 depends on externa
frequencies and momenta; and in the absence of any sym
try between parallel and perpendicular derivatives, one
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easily convince oneself by simple inspection that]k
'
4 G11

Þ]k
'
2 ]G11. In order to absorb these two different dive

gences, one is constrained to renormalize the parallel and
perpendicular momenta in a different way: ifk'→ lk' then
ki→ l 11gki ~where g}«2 can be determined by explicitly
computing the derivatives of the diagram in Fig. 3!. The
scaling law has to be rewritten asb5n'/2(d221g1h),
and all the exponents become non-mean-field in this appr
mation.

Summing up, we have performed the renormalization
the field theory in@4# for the DLG under an infinitely large
driving field. The renormalization procedure yields resu
essentially different from those for a finite field. In particula

FIG. 3. Two-loop contribution toG11.
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corrections to mean field are observed explicitly in the o
loop approximation for the exponentn' . Anisotropic expo-
nents and a non-mean-field exponentb appear from simple
arguments based on the analysis up to two-loop diagra
These severe differences with respect to the finite driv
field case call for extensive computational simulations to
serve numerically the physical differences between the
cases.

Note added in proof.We thank Sergio Caracciolo an
collaborators for kindly sharing with us unpublished resu
which permitted us to detect a small combinatorial error
our original calculation. They have also pointed out to u
problem with infrared singularities in the Langevin equati
presented in this paper~see also B. Schittmannet al., e-print
cond-mat/9912286!. This problem will be tackled in a forth-
coming publication.
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@11# We call it n' instead of simplyn because the correspondin
temperaturet is coupled toD' . Note that the temperature in
the parallel direction, i.e., coupled toD i , is zero in the bare
Lagrangian and does not renormalize. Thereforen i is not de-
fined in our theory.


